Building MCP clients-Node.js
System Requirements
Before starting, ensure your system meets these requirements:
- Mac or Windows computer
- Node.js version 16 or higher installed
- npm (comes with Node.js)
Setting Up Your Environment
First, create a new Node.js project:
# Create project directory
mkdir mcp-client
cd mcp-client
# Initialize npm project
npm init -y
# Install dependencies
npm install @modelcontextprotocol/sdk @anthropic-ai/sdk dotenv
npm install -D typescript @types/node
# Create TypeScript config
npx tsc --init
# Create necessary files
mkdir src
touch src/client.ts
touch .env
Update your package.json
to add necessary configuration:
{
"type": "module",
"scripts": {
"build": "tsc",
"start": "node build/client.js"
}
}
Update your tsconfig.json
with appropriate settings:
{
"compilerOptions": {
"target": "ES2022",
"module": "Node16",
"moduleResolution": "Node16",
"outDir": "./build",
"rootDir": "./src",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
},
"include": ["src/**/*"]
}
Setting Up Your API Key
⚠️
You’ll need an Anthropic API key from the Anthropic Console.
Create a .env
file:
ANTHROPIC_API_KEY=your_key_here
Add .env
to your .gitignore
:
echo ".env" >> .gitignore
Creating the Client
First, let’s set up our imports and create the basic client class in src/client.ts
:
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";
import Anthropic from "@anthropic-ai/sdk";
import dotenv from "dotenv";
import { Tool } from "@anthropic-ai/sdk/resources/messages.js";
import {
CallToolResultSchema,
ListToolsResultSchema,
} from "@modelcontextprotocol/sdk/types.js";
import * as readline from "node:readline";
dotenv.config();
interface MCPClientConfig {
name?: string;
version?: string;
}
class MCPClient {
private client: Client | null = null;
private anthropic: Anthropic;
private transport: StdioClientTransport | null = null;
constructor(config: MCPClientConfig = {}) {
this.anthropic = new Anthropic();
}
// Methods will go here
}
Server Connection Management
Next, implement the method to connect to an MCP server:
async connectToServer(serverScriptPath: string): Promise<void> {
const isPython = serverScriptPath.endsWith(".py");
const isJs = serverScriptPath.endsWith(".js");
if (!isPython && !isJs) {
throw new Error("Server script must be a .py or .js file");
}
const command = isPython ? "python" : "node";
this.transport = new StdioClientTransport({
command,
args: [serverScriptPath],
});
this.client = new Client(
{
name: "mcp-client",
version: "1.0.0",
},
{
capabilities: {},
}
);
await this.client.connect(this.transport);
// List available tools
const response = await this.client.request(
{ method: "tools/list" },
ListToolsResultSchema
);
console.log(
"\nConnected to server with tools:",
response.tools.map((tool: any) => tool.name)
);
}
Query Processing Logic
Now add the core functionality for processing queries and handling tool calls:
async processQuery(query: string): Promise<string> {
if (!this.client) {
throw new Error("Client not connected");
}
// Initialize messages array with user query
let messages: Anthropic.MessageParam[] = [
{
role: "user",
content: query,
},
];
// Get available tools
const toolsResponse = await this.client.request(
{ method: "tools/list" },
ListToolsResultSchema
);
const availableTools: Tool[] = toolsResponse.tools.map((tool: any) => ({
name: tool.name,
description: tool.description,
input_schema: tool.inputSchema,
}));
const finalText: string[] = [];
let currentResponse = await this.anthropic.messages.create({
model: "claude-3-5-sonnet-20241022",
max_tokens: 1000,
messages,
tools: availableTools,
});
// Process the response and any tool calls
while (true) {
// Add Claude's response to final text and messages
for (const content of currentResponse.content) {
if (content.type === "text") {
finalText.push(content.text);
} else if (content.type === "tool_use") {
const toolName = content.name;
const toolArgs = content.input;
// Execute tool call
const result = await this.client.request(
{
method: "tools/call",
params: {
name: toolName,
args: toolArgs,
},
},
CallToolResultSchema
);
finalText.push(
`[Calling tool ${toolName} with args ${JSON.stringify(toolArgs)}]`
);
// Add Claude's response (including tool use) to messages
messages.push({
role: "assistant",
content: currentResponse.content,
});
// Add tool result to messages
messages.push({
role: "user",
content: [
{
type: "tool_result",
tool_use_id: content.id,
content: [
{ type: "text", text: JSON.stringify(result.content) },
],
},
],
});
// Get next response from Claude with tool results
currentResponse = await this.anthropic.messages.create({
model: "claude-3-5-sonnet-20241022",
max_tokens: 1000,
messages,
tools: availableTools,
});
// Add Claude's interpretation of the tool results to final text
if (currentResponse.content[0]?.type === "text") {
finalText.push(currentResponse.content[0].text);
}
// Continue the loop to process any additional tool calls
continue;
}
}
// If we reach here, there were no tool calls in the response
break;
}
return finalText.join("\n");
}
Interactive Chat Interface
Add the chat loop and cleanup functionality:
async chatLoop(): Promise<void> {
console.log("\nMCP Client Started!");
console.log("Type your queries or 'quit' to exit.");
// Using Node's readline for console input
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout,
});
const askQuestion = () => {
rl.question("\nQuery: ", async (query: string) => {
try {
if (query.toLowerCase() === "quit") {
await this.cleanup();
rl.close();
return;
}
const response = await this.processQuery(query);
console.log("\n" + response);
askQuestion();
} catch (error) {
console.error("\nError:", error);
askQuestion();
}
});
};
askQuestion();
}
async cleanup(): Promise<void> {
if (this.transport) {
await this.transport.close();
}
}
Main Entry Point
Finally, add the main execution logic outside the class:
// Main execution
async function main() {
if (process.argv.length < 3) {
console.log("Usage: ts-node client.ts <path_to_server_script>");
process.exit(1);
}
const client = new MCPClient();
try {
await client.connectToServer(process.argv[2]);
await client.chatLoop();
} catch (error) {
console.error("Error:", error);
await client.cleanup();
process.exit(1);
}
}
// Run main if this is the main module
if (import.meta.url === new URL(process.argv[1], "file:").href) {
main();
}
export default MCPClient;
Running the Client
To run your client with any MCP server:
# Build the TypeScript code. Make sure to rerun this every time you update `client.ts`!
npm run build
# Run the client
node build/client.js path/to/server.py # for Python servers
node build/client.js path/to/server.js # for Node.js servers
The client will:
- Connect to the specified server
- List available tools
- Start an interactive chat session where you can:
- Enter queries
- See tool executions
- Get responses from Claude
Key Components Explained
1. Client Initialization
- The
MCPClient
class initializes with session management and API clients - Sets up the MCP client with basic capabilities
- Configures the Anthropic client for Claude interactions
2. Server Connection
- Supports both Python and Node.js servers
- Validates server script type
- Sets up proper communication channels
- Lists available tools on connection
3. Query Processing
- Maintains conversation context
- Handles Claude’s responses and tool calls
- Manages the message flow between Claude and tools
- Combines results into a coherent response
4. Interactive Interface
- Provides a simple command-line interface
- Handles user input and displays responses
- Includes basic error handling
- Allows graceful exit
5. Resource Management
- Proper cleanup of resources
- Error handling for connection issues
- Graceful shutdown procedures
Common Customization Points
Tool Handling
- Modify
processQuery()
to handle specific tool types - Add custom error handling for tool calls
- Implement tool-specific response formatting
- Modify
Response Processing
- Customize how tool results are formatted
- Add response filtering or transformation
- Implement custom logging
User Interface
- Add a GUI or web interface
- Implement rich console output
- Add command history or auto-completion
Best Practices
Error Handling
- Always wrap tool calls in try-catch blocks
- Provide meaningful error messages
- Gracefully handle connection issues
Resource Management
- Use proper cleanup methods
- Close connections when done
- Handle server disconnections
Security
- Store API keys securely in
.env
- Validate server responses
- Be cautious with tool permissions
- Store API keys securely in
Troubleshooting
Server Path Issues
- Double-check the path to your server script
- Use absolute paths if relative paths aren’t working
- For Windows users, use forward slashes (/) or escaped backslashes (\)
- Verify the server file has the correct extension (.py or .js)
Example of correct path usage:
# Relative path
node build/client.js ./server/weather.js
# Absolute path
node build/client.js /Users/username/projects/mcp-server/weather.js
# Windows path (either format works)
node build/client.js C:/projects/mcp-server/weather.js
node build/client.js C:\\projects\\mcp-server\\weather.js
Connection Issues
- Verify the server script exists and has correct permissions
- Check that the server script is executable
- Ensure the server script’s dependencies are installed
- Try running the server script directly to check for errors
Tool Execution Issues
- Check server logs for error messages
- Verify tool input arguments match the schema
- Ensure tool dependencies are available
- Add debug logging to track execution flow